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APPLICATIONS OF THE PHOTOREFRACTIVE EFFECT AND DAMAGE INDUCED
EFFECTS IN FIBERS

INTRODUCTION
This is a report of work carried out under AFOSR contract #AFOSR 90-0198. The focus
is two-fold. One aspect concerns the processes of self-organized second-harmonic
generation in fibers. We have experimentally investigated the nature of grating formation
in the glass fibers and found it to be reversible. That is, a grating can be repetitively
written, erased, and re-written. We have also shown that the grating erasure follows a
power-law time dependence and explain the dependence as a consequence of the
transverse mode structure of the fields in the fiber. Numerical work has focused on the
microscopic aspect of ionization from a model defect potential. We have integrated
Schr6dinger's equation exactly in the one-dimensional case. Results so far indicate that a
photovoltaic explanation of second-harmonic generation in fibers is robust against
variation of the physical parameters of the model.

The second aspect concerns the dynamics and self-organization of photorefractive optical
circuits. We have produced circuits that self-organize according to the nature of their
time dependent input. After self-organizing they process information in an adaptive and
useful way. Our most highly developed circuit is a demultiplexer that separates signals
from a multimode fiber.

The remainder of the report gives a more detailed account of the work, beginning in
section 1 with a description of the experimental work on second-harmonic generation in
fibers. Section 2 discusses some of the numerical work that has provided useful insight
into the microscopic nature of the problem. Section 3 covers the work on self-organizing
photorefractive circuits.

1. SECOND-HARMONIC GENERATION IN FIBERS
The phenomena of second-harmonic generation in fibers' is interesting from both
fundamental and practical point of view. Conversion of a fundamental to its second-
harmonic is not supposed to be possible in glass fibers, yet it can happen very efficiently
after some preparation of the fiber. In some circumstances the fiber appears to prepare
itself, and in this sense the phenomena is apparently self-organizing. Understanding this
self-organization process is a challenge from a fundamental physics point of view. From
a practical standpoint, if this phenomena can be controlled and be made very efficient, it
is a potentially very low cost means of second-harmonic generation.

Recently the principal investigator and collaborators proposed a model for the self-
organized process. 2 Herein we shall refer to this work as AMS-91. The model process
consists of three steps: 1)The ionization of defect sites occurs in such a way that there is
a phase dependent preferred direction for photoelectron emission. This preference arises
from interference between various multiphoton ionization pathways to ionization.
2)Charge redistribution. Once freed from their traps, the charges redistribute, causing a
local space charge field whose direction depends locally on the relative phase between
the fundamental wave and its second harmonic. This dc electric field breaks the
centrosymmetry of the fiber and permits, locally, second-harmonic generation. Space
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charge field brings about an effective z(2 )through the third-order nonlinear susceptibility
of the glass. Because the effective x(  varies spatially at the phase-mismatch frequency
between the fundamental and its second harmonic, it is referred to as a Z(2) grating.
3)Evolution of the second-harmonic field as governed by the slowly varying envelope
equation derived through Maxwell's equations. In order for there to be growth of the
second-harmonic light, there must be self-consistency between the second harmonic light
generated by the presence of the space charge field and the second-harmonic light that
was responsible for the space-charge field in the first place.

In this past year we have experimentally investigated a number of aspects of the
dynamics associated with second-harmonic generation. First, we have found that the
process of writing a X(2) grating is reversible: the grating can be erased by exposure
purely to the second-harmonic and rewritten by simultaneous exposure to the
fundamental and its second-harmonic. Second, we have found that the grating erases
with a power law dependence. While one might expect an exponential decay law, one
can show that the power law can arise simply by considering the transverse structure of
the fields as determined by the modes of the fiber. However, we also found,
unexpectedly, that the power law is itself dependent on the erasure intensity.

We have also performed some numerical calculations that integrate Schr'dinger's
equation exactly for a one-dimensional model potential. This has given us a chance to
compare our perturbation theory calculation with a more exact numerical study.
Qualitatively the analytical and numerical approaches are similar, yet the numerical
version is showing some aspects that the simpler analytical version does not reveal. Of
particular importance is that the phase between the ;C(2) grating and the multiphoton
interference process which created it is dependent on the intensities of the fundamental
and second-harmonic.

Reversibility
In understanding the charge transport phenomena it is crucial to know whether or not the
grating formation process is reversible or not. The question is, do charges become
repeatedly ionized and re-trapped, or does some species of trap change in some
permanent way? The dynamics of the process will be drastically different in the two
cases. If the process is similar to most photorefractive effects, then it is reversible. On the
other hand, the related process of Hill grating formation in fibers appears not to be
reversible. We performed a series of grating writing with subsequent incoherent erasure
experiments on a single, short length of fiber. After erasure the Z ) grating was rewritten.
We found that we could cycle many times from no grating to saturation to the same
maximum level, indicated that the process of grating formation is indeed reversible. In
addition to the knowledge that the grating is reversible, this finding has simplified the
experimental work since we can be confident that we can do a series of experiments on a
single fiber with the worry of trap depletion. In the past, each experiment employed a
,virgin fiber.
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Figure 1.1 shows the experimental apparatus for the erasure experiments. Figure 1.2
shows the experimental results from a reversibility experiment. The curves show the
amount of second-harmonic generated by the X(2) grating. The grating is written by
exposing the fiber to the fundamental and its second-harmonic simultaneously. The data
is obtained by blocking the imposed second-harmonic and measuring the amount
generated by the .fiber. In this case the fiber was exposed to the fundamental and its
second-harmonic until the generated light reached saturation. The grating was
subsequently erased by exposing the fiber to the second-harmonic light alone. At
intervals, the grating strength was measured by blocking the second-harmonic and
illuminating the fiber once again with the fundamental wave briefly. Here we have
cycled through the writing erasure process several times. There is no sign of "fatigue" of
any kind, indicating the processes is indeed reversible.
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Figure 1.1. Experimental apparatus for reversibility, erasure and grating enhancement experiments.
Filters F block unwanted wavelength (second-harmonic or fundamental). A seed second-harmonic
beam is generated with a KTP crystal and separated from its fundamental with a harmonic
beamsplitter HBS. Intensities are adjusted with attenuators A. The relative phase between the
fundamental and second-harmonic is measured using an auxiliary second-harmonic generating
crystal KDP and mainained using a phase-locked loop servo controlling a phase adjuster PA.
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Erasure dynamics
From our model of second-harmonic generation in fibers we expect the processes to be
mediated either by two photons or by four photons of the fundamental frequency and
correspondingly by one or two photons of its second harmonic. So that we could
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Figure 1.2. Repetitive growth and erasure of generated second-harmonic lighL

Points indicate generated second-harmonic intensity. In each cycle, a X (2) grating
is written to saturation of the generated second-harmonic by illuminating the fiber
with both the second-harmonic and its fundamental. After the generated light
satuates, the grating is erased by illuminating the fiber with second-harmonic light
only.

determine the number of fundamental photons involved we performed a series of X(2)

grating erasure experiments. Here a grating is written using both infrared and its second
harmonic, and then erasing the grating with the second-harmonic light only. The power
dependence of the erasure rate should indicate the number of photons responsible for
ionizing trapped charges.

As also observed by other researchers, we saw a power law dependence of the grating
strength. Figure (3) shows a typical erasure curve fit to a power law decay. The grating
strength is inferred by the intensity of the generated second-harmonic. We expect that the
second-harmonic intensity is proportional to the square of the grating amplitude. Our
explanation for the power law dependence is, however, different than that of other
researchers. We show here that the power law dependence can arise simply from the
transverse structure of the fiber modes. We start by assuming that the decay of the
grating is fundamentally exponential in nature, but that the decay coefficient depends
upon the intensity of the erasing beam to some power:
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Figure 3. Decay of generated second-harmonic as X(2) grating is erased. The
points are experimental data, the curve is fitted to a power law dependence
(solid curve).

Here a0 is the decay rate proportionality constant and I is understood to be the erasure
intensity. Now all the optical fields have a strong transverse intensity profile, which, for
the sake of being specific we will assume to be Gaussian:

1(r) = -0 expl-(rOr )1 ,  (1.2)
'TO

with rbeing the transverse radial coordinate and ro the beam radius. Thus, first, the
grating decays at different rates at different transverse locations and, second, the
contribution to the generated second-harmonic intensity is also dependent on transverse
location. Integrating Eqn. (1.1) locally and using rto indicate the transverse radial
component:

G(rjt) =GrOe -ta' (f.)1  (1.3)

The second-harmonic field strength is given by an overlap integral involving the grating
amplitude, the square of the fundamental field strength, and the transverse mode profile
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of the second harmonic. We assume that the fundamental mode (intensity) beam radius is
half that of the second-harmonic. In that case:

014( 1 - '0 11 (1.4)

lexp{-(r/i/ir, )2 JJi exp{(/1ro )2}]r&

The first bracketed factor is the grating strength, the next bracketed factor is the square of
the fundamental field strength and the last factor is the second-harmonic mode profile.
This ungainly expression can be simplified by making the transformations:

U = exp{-f6(r / ro)2}, (1.5a)

0( '

whence:

E j,( ,) fI-2jG(uO)u( ')e"'du. (1.6)

To integrate Eqn. (1.6) we need to know the initial grating amplitude, G(u,O). Almost
whatever the form for the initial grating, Eqn. (1.6) will give a power law at least for long
times. For example, if we assume that the initial grating is everywhere constant and that
the erasure rate is proportional to the incident intensity, (P= 1) then E2,,(,r) lIt and
therefore the second-harmonic intensity falls inversely proportional to t2. As P0
increases, so the power of t with which the second-harmonic decays decreases (i.e.
12 c t -2/iP

.

Our experimental results suggest P is of order unity (see below). One problem in
drawing our conclusions too far is that we do not know the initial grating distribution
particularly well, and our assumption that the fundamental has twice the beam intensity
radius of the second-harmonic is not exact.

We see from Eqn. (1.5b) that the dimensionless time - -./. In other words, the decay
coefficient of the grating should be proportional to the fPi power of the erasure power.
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Our initial intention in the erasure experiments was to determine P by varying the erasure
intensity. In this way we could determine the number of photons involved in the erasure
process. We expected, as indicated, that the erasure process would involve either 1 or 2
photons of the second-harmonic light. To our surprise, however, we find that P is itself
dependent upon the erasure intensity. Roughly, as the power varies over a factor of three,
so does P, but inversely. Our current analysis shows that fP varies from about 0.9 to 2.6.
A better estimate. taking into account the actual beam profiles is currently under way.
The interpretation of these results says that the number of photons involved varies
between 0.9 and 2.6 with an erasure power dependence. One explanation for this
dependence suggests that an intermediate level may play a role and that ionization is a
two-step process. The 2.6 power indicates that at low intensities three photons may be
involved. One scenario is that a metastable level is excited by a two-photon transition,
and then it is ionized by one more photon. This would be consistent with the known
transition at 240nm and metastable state decaying with a 400nm fluorescence. If two
steps are involved, then the power dependence of the erasure rate should vary from three
photons at very low erasure powers to 1 photon at high powers as the population of the
intermediate level becomes saturated. Unfortunately, we are limited on the high power
end by fiber damage and on the low power end by exceedingly slow erasure rates, on the
order of many hours. Thus we cannot in practice necessarily see the full power
dependence of the erasure rate to prove definitively the existence of an intermediate level.
Evidence of an intermediate level has also been found by Margulis in a very different set
of experiments.

A publication reporting the above findings is now in preparation. Current work involves
a more careful numerical analysis of the data, taking into account the actual mode
profiles, core sizes and reasonable estimations for the initial grating amplitude transverse
distribution.

Grating enhancement experiments
In the conventional photorefractive effect, the two-beam coupling gain of a drift-
dominated medium can be enhanced by imposing a small frequency difference between
the two beams. The reason for this is simple. In a drift-dominated medium the
interference pattern caused by two, frequency degenerate beams is stationary and 900 out
of phase with the induced index of refraction grating. No energy coupling can take place
with this value of phase shift By frequency shifting one beam relative to the other, the
interference pattern moves and so does the induced grating. However, because of the
finite time response of the medium, the grating lags behind the interference pattern.
Thus, there is no longer a 900 phase difference between the two and energy coupling can
take place. Measurements of the phase of the X(2)grating relative to the interference
between twice the fundamental and the second-harmonic reveals approximately 900. We
expected that the efficiency of second-harmonic generation therefore to increase by
putting a slight frequency shift on the seen second-harmonic. The frequency shift in our
experiments was achieved by locking to an intensity maximum of the generated second-
harmonic light --the locking was done with a phase-lock loop feeding back to a piezo
mirror controlling the phase of the seed beam. The feedback scheme should force the
phase between the seed and the fundamental to have the optimum phase for conversion of
the second-harmonic. To our surprise, the phase locking experiment revealed decreased
production of second-harmonic light.
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2. MODEL NUMERICAL CALCULATIONS
The model in AMS-91 was based on a time-independent perturbation calculation ,n
which the ionized electron states were taken to be free particle plane waves. In other
words, it does not take into account scattering of the ionized electrons from the trapping
potential. Furthermore, most experimental investigations have used pulsed lasers (e.g.,
mode-locked and Q-switched Nd:YAG) with powers approaching the damage threshold
of the glass. Consequently, it is unclear whether a perturbative approach is applicable.
While an analytic calculation as in AMS-91 provides insight into the basic physics, it is
not clear to what extent the qualitative conclusions remain as the simplifying assumptions
are eradicated.

In collaboration with L. You, J. Mostowski and J. Cooper, we have begun a numerical
study of the interference induced asymmetric photoemission of electrons from a one-
dimensional model potential. We perform a time-dependent numerical integration of
Schrdinger's equation beginning with an electron in the ground-state of the potential.
Scattering of the ionized electrons from the potential is implicitly taken into account by
the calculation.

The single electron at the trap site is modeled as an electron bound to a one-dimensional
short-range attractive potential:

V() = -V0 / cosh2(x / a), (2.1)

with a range of the order of the parameter a.

This one-dimensional potential has analytical eigenvalue and eigenvector solutions for
the b. 'nd and excited states. The interaction with the external electric field is taken to be
ep. A()/ mc + e2A 2(t) / 2Mc2,which comes from the minimum coupling form of the
Hamiltonian (the quadratic term can be neglected since under the dipole approximation it
will only introduce a constant phase), and where E(t) = -dA / d(ct). Here e denotes the
electron charge, c the speed of the light, fi the electron canonical momentum, and E the
external laser field. The Schrtdinger equation describing the model atom subject to the
strong laser field is:

i7'W(x,) -- [- L + V(x)]'(x,t), (2.2)

where P = -eA/c is the kinetic momentum, and where the initial condition is
specified by some 'Y(F,O). As we only consider the local ionization process at a given z,
the external electromagnetic field is taken to be of the following form

i(t) = i E,(t)sin(ox) + E2.,(t) sin[2ot + O(z)]. (2.3)

The envelope functions determining the amplitudes of the fields are

........... m mm m mm n
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E, .sin 2(z 12), 0 < t < r,

E () E,,o 2[Xt < t,T + r 24E., t) =(2.4)
E, o sin [~-T/24] T +,< t< T+ 2,

01, otherwise,

with o) =, 20) for the fundamental and second harmonic fields respectively. Thus the
carrier frequencies are equal to (0 and 20 respectively, T is the rise and fall time of the
pulse, and T is the duration of the constant amplitude portion of the pulse. E. and E2.0

are the maximum amplitudes of the two fields. Numerical methods are used to solve the
Schr~dinger equation up to time t = T + 2?, starting with the ground state IV(x,) > as
the initial condition. At later times (t > T + 2,r) the external field is equal to zero, so the
resulting wave function can be analyzed in terms of free solutions of the Schr6dinger
equation. Thus the probability amplitude for the system to remain in the ground state can
be found by projecting the final wave function I V'(x,T + 2?)> onto the ground state
wave function. Similarly, the instantaneous ionization probability can be defined as

pi.(t) = 1-4< V((x,O)IF(x,t) >12. (2.5)

This is physically meaningful only for t > T + 2?r, since we cannot turn the pulse off
instantaneously. Nevertheless, this is still a useful quantity with which to analyze the
ionization process, especially in the perturbative regime. The spatial distribution of the
ionized part can be described by projecting out the bound state part:

I',(x,t) >=4IF(x,t) > -I W(x,O) >< V/(x,O)IF(x,t) >. (2.6)

Since the potential is short-ranged, we may define ionization probabilities in the "+" and
"-"directions by

P (t) - dx < Ti.(x, Ti.(x,t) >,
(2.7)

P-(t) "f < Ti(X. (X,0 >,t 0

which represent the ionization probabilities for the photoelectron to be ejected into +
and "-" directions respectively. It is this difference in ionization probability that gives rise
to a space charge field leading to second-harmonic generation in the fiber. We are in the
processes of numerically solving the above SchrOdinger equation (2.2) for a wide range
of parameters, for laser intensities from perturbative to nonperturbative regimes, and for
various shapes and durations of the pulses. We find that strong interference effects, as
utilized by AMS-91, universally characterize the ionization process, and basically
confirm the physics involved in the AMS-91 model.
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Figure 2.1. Electron probability distribution of a model
potential after exposure to a field and its second-harmonic.
The model potential sits at the center of the abscissa. The
electron is seen to be preferentially emitted to the left or to the
right depending on the relative phase of th two optical fields.

As an example of simulation results, Fig. 2.1 shows the electron probability distribution
sometime after the laser field has been turned off. The model potential sits at the middle
of the abscissa, x /a = 0. Each plot is for a different relative phase between thefundamental and second-harmonic field. Looking at the area underneath the curves wesee that the electron is more likely to go to the left or to the right depending upon the
relative phase of the fields. Somewhere in-between the phases shown, the electronprobability will be equal for left and right propagating electrons. Figure 2.2 shows themodulation index, given by (p. -p_/(p + p), as a function of the relative phase for
specific field intensities.

We note in Fig. 2.2 that the maximum modulation index occurs neither at 7c or x/2, thus in
general there will be both gain and a phase shift caused by the Z(') grating. These
calculations are still under way in order to determine, for example, how the phase of
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maximum modulation index changes as a function of the absolute intensities of the
optical fields.

1.0 (b)(b)

e 0.5

C-+

* 0.0

-0.5
3"

-1.0
0.0 27 2T

Figure 2.2. Modulation index versus relative phase between the fundamental and the
second-harmonic. To the extent that the modulation index is non zero at a phase of x/2,
there is gain for the self-organized growth of the second-harmonic lighL

3. SELF-ORGANIZING PHOTOREFRACTIVE DEMULTIPLEXER
We are very excited about our progress in understanding the dynamics of photorefractive
oscillators. The motivation for understanding the dynamics is to subsequently control,
and then synthesize a given, desired, behavior from a photorefractive circuit. Based upon
some new understanding we demonstrated a photorefractive circuit that self-organizes to
demultiplex signals from a multimode fiber. This circuit is described in more detail
below. As a spin-off of this work (funded under separate contract with NSF and AFOSR)
we are working on an integrated optics version of the self-organizing demultiplexer.

We wish to point out that it is not the demultiplexer per se that maintains our interest,
rather, the demultiplexer is the prototype for a wide variety of self-organizing circuits.
By understanding and optimizing demultiplexer performance, so do we pave the way for
a greater number of self-organizing processors.

We have demonstrated a self-organizing photorefractive circuit which demultiplexes a
beam having two signals imposed on separate optical carrier frequencies into two beams,
each containing one of the signals on its carrier. 3 Unlike conventional demultiplexing
techniques we require little a priori knowledge about the carrier frequencies. The signal
channels must be spatially uncorrelated and their frequency separation must be more than
the photorefractive response bandwidth (Hz-KHz). The optical circuit uses no local
oscillator, and the photorefractive response bandwidth places no upper bound on the
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Figure 3.1 A conceptual application for a demultipleer. Two telephone conversations, symbolized
by a high and a low frequency square wave, modulate their respective optical carriers (0 and (02.
These two signals are carried by multimode fibers, then both are carried by a single multimode fiber.
At the output, the signals will be spatially scrambled. The demultiplexer's task is to separate the two
channels.

channel bandwidth. Experimental results for demultiplexing a beam having two signals,
with a BaTiO3 circuit, show contrast ratios of better than 40:1 at the outputs.

Here we review the characteristics of the demultiplexer in the context of a model
application in which two signals sources share a common multimode fiber. Consider the
task of demultiplexing a number of signals carried on a multimode fiber, and assume we
have no a priori information about the carrier frequencies other than they are different.
How can the channels at the output of the fiber be separated? One might use a grating, but
then the carriers would need to be very well separated in wavelength, by at least an
angstrom or so, and we do not know ahead of time that they are. One might use
interferometric techniques, but these require additional frequency scan and locking
electronics that must also avoid possible degeneracies in resonance conditions. To make
things worse, neither approach can handle the high spatial content of the speckle patterns
in a straightforward manner. We suppose that the signals are telephone conversations
modulating separate laser diodes, say, residing in two cities, New York and Chicago (see
Fig. 3.1). The signals are combined in one multimode fiber in Denver and in San
Francisco, they are completely spatially mixed. The task is to separate the signals. The
output of the multimode fiber is a very complicated speckle pattern. A self-organizing
circuit can separate the channels simply by recognizing that the two signals are
independent in both space and time.

Figure 3.5 shows an experimental schematic demonstrating a self-organizing
photorefractive demultiplexer. Two carrier frequencies are generated from a single laser
using acoustooptic modulators; one upshifting the laser frequency by 140 MHz, the other
downshifting by the same amount. Square wave signals are imposed upon their
respective carriers by modulating the acoustooptic cells. Both signals are injected into a
multimode fiber. The output from this fiber is a spatially scrambled (speckle pattern)
combination of the two signals.
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The speckle output from the fiber pumps a dual ring photorefractive oscillator circuit.
One detector looks at the output from each of these rings, as shown in Fig. 3.5. Because
of the mode competition between the rings, the resulting dynamics gives rise to
demultiplexing behavior of the circuit. Figure 3.6 shows the time evolution of the
oscillating intensity in the two rings. Each of the two oscilloscope traces indicates the
extent to which each signal is present in each ring as a function of time. At steady-state,
each ring oscillates with only one signal carrier, each ring having taken a different carrier.
Fig. 3.7 shows the steady state output seen by each of the two detectors shown in Fig. 3.5.
Here again, we see the two rings have chosen different signals. There is a small amount
of crosstalk in the signals, approximately 40:1.

100p j

JRe ,lexve
;nzBaT.Oj Gain

1-6 8

PW"

100g I

sud949FdUe

Figure 3.5. Self-organizing photorefractive demultiplexer. Two carriers are generated from a
single laser by a pair of acoustooptic modulators. Square wave signals are imposed on the
modulators. Both signals we injected into a multimode fiber. The speckle pattern that appears at
the output of the multimode fiber pumps a photorefractive dual ring oscillator. The system self-
organizes in such a way that in steady state, one of the signals oscillates in one ring, the other
signal oscillates in the other ring. Though it may be slow to organize, once it does so the system
demultiplexes as any passive device would. The signal bandwidth is limited only by the round-
trip travel time of light around the rings to roughly IGHz

While the demultiplexer circuit was working during the latter part of the previous year,
we have made a number of improvements in the design and the stability which have
yielded better performance. This work is described in some detail in Ref. [3]. We also
attempted a number of demultiplexer designs employing mutually pumped phase
conjugators. In principle, these have some advantages in simplicity but in practice we
were never able to make them work as well as the ring resonator design. For the ring
resonator we obtained signal separations of up to about 40:1, while for the phase-
conjugator designs we obtained about 5:1 at best.
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Figure 3.6. Mode evolution of demultiplexer shows the self-
organizing behavior. The upper oscilloscope trace shows the intensity
oscillating in one resonator (a) at each signal frequency. The lower
trace shows the intensity oscillating in resonator b. Note that after
some timne resonator a oscillates entirely in signal 1 while resonator b
oscillates entirely in signal 2. (The labeling of the resonators and
signals is arbitrary.)

The progress in understanding the dynamics in ring circuits has been aided by numerical
simulation of our photorefractive circuits. We have made numerous numerical studies on
both classes of demultiplexers to investigate issues of stability and time response. Of
particular interest is the mechanism by which symmetry between the two ring - signal
combinations - after all, the circuit is nominally symmetrical between the two cases:
ring a oscillating in signal I and ring b oscillating in signal 2. For the time being we do
not know whether the final state is dictated by biases that make the rings somewhat
different, or from noise, which, computer simulations show, can cause spontaneous
breaking of the symmetry.

Current investiptions in self-orgnizing circuits
Ongoing work looks at continuous resonator circuits. Whereas the demultiplexer and
related circuits have a discrete number of rings, it is interesting to study dynamics of
oscillators having a continuum of ring paths. In principle this is possible with appropriate
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design of an open resonator. Obtaining the proper competitive dynamics is the key, and
this is now being looked at by computer simulation. Why is a continuum circuit design
interesting? Our motivation comes from a class of neural network models called
topology preserving maps. In these systems the networks have a notion of topology built
into them: any given unit is connected to a neighborhood of other units. The self-
organizing behavior of these networks is fascinating: they can discover the spatial
topology of the input space. They have been shown to be useful in pattern recognition
and speech processing, for example.
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Figure 3.7. Steady state output intensity of self-organizing demultiplexer. 'Me two resonators have
divided between thm the two spatially scrambled signals of the pump. A small amount of crosstalk
exists: One signal contaminates the other by about 1:40.
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